A new Chapter in the Book of Bounce

December 8th, 2015

2015-12-08 15_11_30-Radio Assistent for Space Communication by DJ5AR

Constellation at the end of the QSO

While ISS Bounce took Jan, PA3FXB, and me 2 months of testing and improving to succeed, Satellite Bounce was a much bigger challenge. Despite the fact, Jan and the team of PI9CAM are operating the 25 m dish of the Dwingeloo radio telescope, it took us nearly 2 years, enormous patience and scores of tests until we finally managed to receive “Rs” to complete a QSO today (December 8th, 2015). As far as we know, it is the first time ever, a two way amateur radio contact could be completed by using an unmanned spacecraft as a reflector.Above screenshot shows the position of the satellite at the end of the QSO. The Satellite rose in SSE and set in NNW. A calculative common window opened at the point, marked “O”. Local obstructions were not considered. Due to safety reasons transmissions in Dwingeloo are limited to elevations above 10°. So the AOS (acquisition of signal) happend shortly before the groundtrack of the Satellite crossed the 40th degree of latitude northwards, as soon as PI9CAM started transmissions. Sum of slant ranges (distance between ground station and satellite) was 3400 km at the beginning and 2000 km at the end of the contact.

Much of the reflections remained below the noise floor, but this one of PI9CAM, right at the beginning (14:10:10 UTC), is a nice example, of what can be received:

 

And vice versa DJ5AR as to be heard in Dwingeloo (14:11:00 UTC):

The used object OKEAN-O (NORAD #25860) is a joint Russian-Ukrainian Earth observation satellite, launched on July 17th, 1999 by an Ukrainian Zenit-2 carrier rocket. The satellite is in a polar orbit of about 650 km height with an inclination of 98°. The mass is 6.2 tons and the RCS (radar cross section) is figured between18 and 20 m². It has been used for research of natural resources, ecological monitoring and hazards prevention. Designed for a life time of 3 years, it is out of service now.

x2015-12-08 15_43_11-WSJT-X v1.6.1-devel by K1JT

QSO in WSJT-X

In use by the ground stations were the 25 m radio telescope in Dwingeloo by PI9CAM with 120 W and a 3 m dish with 150 W at the feed by DJ5AR in Mainz. The mode used was digital JT9H that comes with the new WSJT-X software by Joe Taylor, K1JT. The transmit/receive periods were set to 10 seconds, working around a center frequency of 1296.300 MHz. The automated Doppler tracking (+/- 60 kHz) has been performed for the complete path on DJ5AR´s side with a homebrew tracking software. The calculative power budget during the QSO was about -154 dBm. This value is very optimistic, as it presumes the optimum reflectivity of the satellite, which depends on its orientation.

Conclusion: The main difficulties in this game are:

  • Selection of suitable satellites, depending on radar cross sections and slant ranges.
  • Compensation of the Doppler shift with a maximum rate of 600 Hz/second.
  • Antenna tracking with dish of a mass of 120 tons.

 

To be continued…