Tag Archives: Doppler

ISS Bounce Tests with new WSJT-X

September 13th, 2015

Following Jan´s (PA3FXB) suggestion, we tried the new experimental WSJT-X software. The mode, we chose was JT9 H. Also we agreed in trying full doppler compensation to be used on my side. Everything worked fine, as can be seen in the screenshot below.

2015-09-13 08_15_51-WSJT-X v1.6.1-devel by K1JT

 

ISS Bounce in JTMS

September 5th, 2015

Back from our holidays Jan, PA3FXB, and I had another test via ISS Bounce on 23 cm today. As I located a bug in my Doppler correction software, causing unwanted steps, it could be fixed by finding a workaround for the malfunction in compilers NOW() routine, for returning the correct time in milliseconds. So the improved Doppler correction is working smoothly as can be seen and heard in the signals received.

2015-09-05 09-51-15 PA3FXB in JTMS

PA3FXB in JTMS received by DJ5AR via ISS Bounce. Center frequency was 1296.300 MHz.

094915  2.5 2270  3 36  248     DJ5AR PA3FXB
094915  6.5  520  2 26  276     PA3FXB DJ5AR
094915  9.7  360  1 26  310     PA3FXB DJ5AR
094945 12.8  180  1 26   64     PA3FXB R27 R27   DJ5AR
095115  3.1  300  2 26  268     DJ5AR PA3FXB R27 R27
095115  4.1  320  1 26  205     PA3FXB R27 R27   DJ5AR
095115  7.1  300  1 26  157     R27 R27   DJ5AR PA3FXB
095115  8.5  320  2 26  153     R27 R27   DJ5AR PA3FXB
095115 10.1 1560  8 36   65     PA3FXB R27 R27   DJ5AR
095115 11.7  300  5 26  138     R27 R27   DJ5AR PA3FXB
095115 12.3  820  7 26  111     R27   DJ5AR PA3FXB R27
095115 13.7  680  4 26   40     PA3FXB R27 R27   DJ5AR
095145  5.3  440  2 26  115     PA3FXB 73 73
095145  7.6  740  3 26  271     73 73 PA3FXB
095145  9.3 1440  3 36  283     73 PA3FXB 73
095145 12.0 1180  5 36  244     PA3FXB 73 73
095215 10.5 1120  3 36   56     WOW
095215 12.8 1520  3 36  190     WOW
095245  4.1  740  1 26 -116     SUPER
095315  2.1  420  1 26   -7     73
095445 16.0  140  2 26  252     DJ5AR PA3FXB
095615 14.7  140  4 26  231     73 73 PA3FXB          

We even had some kind of conversation at the end 😉

As further tests showed, the full doppler correction on my side is working very well now. This enables potential sked partners to work on a fixed frequency by just tracking the International Space Station with the antenna.

Sked requests are welcome:  dj5ar (at) darc.de

Modes, successfully being used so far: CW, SSB, ISCAT, JTMS

Presentation “Let´s Bounce” IIa

October 21st, 2014

Last night, when I was going to switch off all the stuff in my shack, I saw an email from Malte, DE7LMS. I opened it and found a link to a video he recorded of my recent presentation in Weinheim.

IARU-Region-1 UHF/Microwaves Contest 2014

October 5th, 2014

After my complainments about using the ON4KST chat in March Contest and the response I received from Claus, OZ1FDH, and Kjeld, OZ1FF, recommending the KST2ME tool, I added my homebrew prototype of a selective ON4KST client extension to my station control software. It communicates via telnet with the server. While working satisfactorily under normal circumstances, it was a desaster under contest load. When the software didn´t crash, it at least slowed down, by computing hundreds of posts in shortest time. Between 300 and 400 users have been logged to the microwave chat during contest time. During the first contest hours I tried to solve the problems with certain bug fixes, resulting in a huge loss of contest time. So I had to return to the classic style in using the web client of the chat.

QSOs on 23 cm

In total I logged 73 QSOs on 23 cm to 12 DXCC countries, spread over 39 grid squares (results). ODX was HG7F over 817 km. The use of the AirScout software, written by Frank, DL2ALF, has been essential. Most of the QSOs have been completed by assistance of aircraft scatter.

A nice example is the one with DJ5BV in JO30KI. The distance isn´t really far enough to do it via aircraft sctatter, but it seems, both antennas were pointing west and that resulted in effects of aircraft backscatter with significant dopplershifted reflections.

2014-10-05 11_59_34-Backscatter dj5bv innerDopplershifted reflections of Gerd, DJ5BV, caused by backscatter of aircrafts.

 

Reception of ISEE-3

July 30th, 2014

For quite a while now I try to catch a signal of ISEE-3. Because of severe thunderstorms, there was no opportunity to check out yesterday. But today (July 30th, 2014) is the day to listen to this 36 year old bird.

The signal of the beacon on 2,270.414 MHz isn´t too strong, but clearly audible in the speaker. The actual distance is about 1.6 million km, the furthermost man made signal I ever received!

2014-07-30 11_30_21-HDSDRThe downlink transponder A on 2.270.4 MHz uses an antenna array with a gain of 7 dBi, a beamwidth of 12° and circular polarisation. The nominal TX power is 5 W.

The equipment I am using, is just a FUNcube Dongle Pro with a 13 cm ATV converter (LO 916 MHz, IF 1,354 MHz) and a 13 cm LNA near the 23/13 cm dual band ringfeed at my 3 m dish.

Frequency calibration is performed on ordinary 13 cm beacons like DB0UX. The dish calibration is done by optimizing sun noise on 23 cm or the levels of SIRIUS satellites on 13 cm.

The rhythmical fading of the signal seems to be caused by the space probe´s spin of 19.76 revolutions per minute.

Presentation “Let´s Bounce”

June 22nd, 2014

On July 24th, 2014 on 19:00 CEST I will talk about how to surmount the horizon on VHF and up at the local DARC Club in Bodenheim near Mainz.

After giving an overview over the classic propagation modes Es, Aurora, MS and Tropo, I will explain, how aircraft scatter and ISS bounce work. EME will be subjected too and the presentation will be completed by an introduction to “Visual Moonbounce” as performed by Daniela de Paulis.

Location:
Deutscher Amateur-Radio-Club e.V.
Ortsverband Bodenheim
Haus der Vereine
Laubenheimer Str. 22
55294 Bodenheim

The admission is free, but please register via email to
DK2FQ   wolfgang.beer (at) gmx.net   or to me   dj5ar (at) darc.de

ISS bounce V: The QSO!

May 23rd, 2013

STS-133 International Space Station after undocking 5

(Copyright by NASA [Public domain], via Wikimedia Commons)

After a lot of tests and improvements have been done in tracking the doppler shifted signals, Jan, PA3FXB any I had another try around 1296.300 MHz this morning. Both of us performed compensation of the own doppler component as well in receiving as in transmitting. We agreed in using  the EME QSO protocol and periods of 30 seconds.

PA3FXB as received by DJ5AR

Jan appeared within my filter bandwidth as soon as the ISS became visible to both of us. His signal strength was peaking up to nearly 20 dB above noise and was easy to copy. The tracked frequency seemed to be stable until the ISS culminated. Then the variation of the doppler shift became so rapid that the compensation mechanism was not fast enough anymore. But that happened to the very last part of our QSO while we were transmitting our final 73s. So I can state that the best signal quality can be expected during the ascending and the descending parts of the pass.

In the meantime I received Jan´s recording. Listen how DJ5AR sounds on his side:

DJ5AR as received by PA3FXB

Many thanks to Jan for his cooperation and his patience in numerous tests before.

This success is dedicated to our fathers, who suffer from the same disease!

If you are interested in a try, do not hesitate to contact Jan or me. You can find us in the HB9Q 1296 MHz EME logger or in the ON4KST microwave chat, when QRV.

 

ISS bounce IV

May 10th, 2013

Today Jan, PA3FXB and I used ISS passes to improve doppler compensation.

1.2G_DJ5AR_PA3FXB_20130510_083025

The first pass of three was disappointing because no reflections could be detected. In the second one I found Jan shortly after his window opened. But it sounded more like a strange kind of music than CW, Jan stated after listening to the audio file, I recorded of his signal. The reason were too long steps in timing for the frequency correction. I reduced it for the last try from 100 ms to 10 ms. After some recalibration of frequency and rotor control I started the system again when the ISS rose.

2013-05-10 13-43

I could hear Jan without any manual corrections immediately after he started transmissions. The frequency tracking worked quite smoothly and reading his CW was possible without any problems.

PA3FXB as received by DJ5AR with QRG tracking every 10 ms

The audio file contains Jan´s signal in three periods. From 0:00 to 1:00 the signal raises while being on the upper flat part of the doppler curve shown above. During the second period from 1:00 to 2:00 the signal passes the steep part and even an adjustment every 10 ms leads to a kind of jumping signal. When receiving the third period, the signal was quite stable again and faded out, while the ISS moved to the eastern horizon.

In between his TX periods Jan tried to catch my signal without doppler compensation, just playing with the RIT. He successfully got a short part of my transmission:

DJ5AR as received by PA3FXB without QRG tracking

Doppler compensation on my TX part did not work. It seems that the SDR does not accept CAT commands for frequency change while transmitting. So we will work on another strategy, where TX frequencies remain fixed and both stations will do full doppler compensation only while receiving.

ISS bounce II

April 8th, 2013

Another test tonight with the experience of the one two days ago, was more efficient in finding the reflections. The ISS passed south of our QTHs. So I could track the whole pass from rise to set. Jan´s signal could be detected most of the time during his window. The picture shows his signal shortly after the rise of the ISS. Caused by the doppler effect it moves from right to left. The shift in this detail varied between 47 kHz and 38 kHz, while PA3FXB was transmitting on 1296.300 MHz in CW.  By a length of about 25 seconds there was a variation of 400 to 500 Hz per second.

PA3FXB shortly after rise without QRG tracking

PA3FXB 2013-04-08 shortly after rise Audio

PA3FXB shortly after rise

PA3FXB shortly after rise with manual QRG tracking

Jan was transmitting his callsign “PA3FXB” followed by “T”s. The variation of the pitch in the first audio file is caused by manually tracking the signal. The second audio file gives an impression of the speed of the doppler variation. An effective  compensation of the doppler effect seems to be most important.

There have been earlier attempts to realize QSOs by reflections on the ISS. SM2CEW reports about nearly completing QSOs on 144 MHz with SM7WSJ in 2007 and he tried also with SV3AAF (more). DF2ZC claims the first ever QSO via ISS scatter on 2 m with DH7FB on December 9, 2007. They completed three more QSOs in 2008. It seems that these were the only four QSOs via ISS bounce since then. VA7MM reports about tests on ISS bounce with VE7BBG on 23 cm in 2004. PE1ITR tried with DK3WN in 2007.

ISS bounce

April 7th, 2013

Tonight Jan, PA3FXB and I tried, what we were discussing about for quite a while. There was a prediction of an ISS pass shortly after local midnight and both of us had no other appointments. So we agreed that Jan should make a transmission on 1296.300 MHz as soon the ISS became visible to him and tracking it as long as possible. My part was to monitor the pass of the International Space Station on my SDR. We used 3 m dishes on both ends and Jan had approximately 375 W in CW.

PA3FXB via ISS Beginning

PA3FXBs signal at the very right

Here is the result. Jan appeared with a relatively strong signal (on the very right), faded out and came back with weaker signal strength. I interpret it, that the first appearance was backscatter and the second was forward scatter, what has to be discussed. Doppler was extremely strong and more than 40 kHZ at the beginning.