Category Archives: JWST

Looking for the James Webb Space Telescope

January 6th, 2022

Artist conception of the James Webb Space Telescope. (Credit: NASA GSFC/CIL/Adriana Manrique Gutierrez)

As the long-awaited launch of JWST happened recently at Christmas and it is on the 1.5 million km journey to Lagrange Point L2, I found some time to collect information about the communication system. I was very pleased to see a frequency in the satellite band next to the 13 cm amateur radio band. It is being used for a telemetry downlink with 6 W into a pair of omni-directional antennas. Feed and LNA are not really designed for this part of the band, but still usable with some loss. Later the scientific traffic will happen in the 26 GHz Ka-band.

When looking for tracking data, I found a two line element data set at NORAD dating back to December 28, 2021 for JWSTs NORAD number 50463.

1 50463U 21130A   21362.00000000  .00000000  00000-0  00000-0 0  9999
2 50463   4.6198  89.0659 9884983 192.3200  17.4027  0.01958082    27

My tracking software accepted it and the calculated information looked very plausible, as the distance to the object was very close to the one published on the official JWST website and azimuth and elevation pointed roughly to L2. I am aware, that JWST must not fly on the direct line, as it will be in a wide orbit around.

Five Lagrange points in the Sun-Earth-System (not to scale). (Credit: NASA)

As in the past, when I received signals from exotic sources like ISEE-3 and Longjiang-2, I used my 3 m dish with the ring feed and LNA for 2320 MHz. I tried to use one of my PLUTO SDRs instead of the 13 cm transverter, but these are far too deaf and the LNAs gain of 16 dB is not enough to show any change in the noise, when switching it on and off. So I used a similar configuration, as before and mounted the 13 cm band ATV converter, I used to receive TV signals from the ISS, to get a sufficient signal level on the IF for the PLUTO.

Trace of the JWST signal, it is not audible. (DJ5AR)

Last, but not least, I saw a trace in the waterfall diagram, a little below the operating frequency. I calculated the doppler of the moving probe to about -2 kHz, which has to be combined with the doppler effect resulting of the Earth rotation. I found the signal 1 kHz too low in the reading, but the PLUTO is stabilized just by an OCXO only and the converter is not locked at all, so I didn´t worry about the difference. Turning the dish away and back to JWST resulted in disappearing and reappearing of the signal. The observed doppler drift over 1.5 hours matched quite well the calculated drift caused by Earth rotation. The shift at the rise is about -400mHz and at the set -2900 Hz, -200 Hz per hour.

Well, I am pretty sure, I have received the signal of the James Webb Space Telescope in a distance of nearly one million kilometres!

Empfang des James Webb Weltraumteleskops

6. Januar 2022

Artist conception of the James Webb Space Telescope. (Credit: NASA GSFC/CIL/Adriana Manrique Gutierrez)

Nachdem das James Webb Weltraumteleskop (JWST) an Weihnachten gestartet worden und auf dem 1,5 Millionen Kilometer langen Weg zum Lagrange-Punkt L2 ist, habe ich beim Stöbern im Internet Informationen und Frequenzen zum Kommunikationssystem gefunden. Demnach sendet es im dem 13-cm-Amateurfunkband benachbarten Satellitenbereich (S-Band) mit 6 W an einem Paar von Rundstrahlantennen Telemetriedaten zur Erde zurück. Der Erreger in meinem Parabolspiegel und der dort installierte Vorverstärker arbeiten hier (50 MHz tiefer) zwar nicht mehr optimal, aber noch brauchbar. Die spätere wissenschaftliche Datenübertragung wird im Ka-Band bei 26 GHz erfolgen.

Das Wissen um die Sendefrequenz ist die eine Sache, die andere ist, die Antenne auf den richtigen Punkt am Himmel zu richten. Antennennachführung für Satelliten im Erdorbit besorgt bei mir ein kleines Programm, das mit sogenannten „Two Line Element Sets“, die von der amerikanischen NORAD stammen, gefüttert wird. Für das Weltraumteleskop mit der NORAD-Nummer 50463 sieht das letzte verfügbare Set vom 28.12.2021 so aus:

1 50463U 21130A   21362.00000000  .00000000  00000-0  00000-0 0  9999
2 50463   4.6198  89.0659 9884983 192.3200  17.4027  0.01958082    27

Ich war mir nicht sicher, ob das auch mit Objekten funktioniert, die den Erdorbit verlassen haben, aber der Vergleich der von meinem Programm berechneten Entfernung mit der aktuellen Angabe auf der NASA-Webseite zeigte ähnliche Werte um 920.000 km. Zudem sahen auch die Richtungswinkel plausibel aus und wiesen in etwa zum am Nachthimmel auf der Verbindungslinie Sonne-Erde liegenden Lagrange-Punkt L2. Da das Teleskop in einen weiten Orbit um diesen Punkt eintreten soll, gehe ich davon aus, dass es auch nicht genau auf der Verbindungslinie Erde – L2 fliegt.

Die fünf Lagrange-Punkte im Sonne-Erde-System (unmaßstäblich). (Credit: NASA)

Für den Empfang habe ich, wie schon bei der Kometensonde ISEE-3 und dem Mondsatelliten Longjiang-2, meinen 3-m-Parabolspiegel, Ringfeed und Vorverstärker für 2320 MHz, ATV-Konverter mit LO= 916 MHz und ein ADALM-PLUTO SDR (Software Defined Radio) am Laptop benutzt, um den empfangenen Frequenzbereich in einem Wasserfalldiagramm sichtbar zu machen. DerPLUTO ist in dem Frequenzbereich leider viel zu unempfindlich, um ihn direkt nach dem Vorverstärker (16 dB Gain) einzusetzen. Deshalb dient der Konverter eigentlich nur dazu, das Eingangssignal weiter aufzupeppen und in einen empfindlicheren Bereich umzusetzen. Gleiches wäre vielleicht auch mit einem zweiten LNA mit entsprechender Durchgangsverstärkung zu erreichen.

Spur der JWST-Aussendung im Wasserfalldiagramm. Das Signal ist nicht hörbar. (DJ5AR)

Der langen Rede kurzer Sinn: Wenige Kilohertz unter der Sollfrequenz tauchte in der vergangenen Nacht eine Spur im Diagramm auf, die verschwand, sobald ich die Antenne wegdrehte und wieder auftauchte, wenn sie zurückgedreht wurde und die fortlaufend aktualisierte Position des Teleskops am Himmel weiterverfolgte. Die Frequenzverschiebung nach unten entsteht aufgrund des Dopplereffekts, denn das JWST entfernt sich von der Erde mit hoher Geschwindigkeit (450 m/s). Das wird dazu auch von der Erdrotation überlagert, wegen der wir uns auf der Erdoberfläche in der ersten Nachthälfte dem Objekt etwas “nähern” und in der Zweiten entsprechend “entfernen”. Das mildert die Verschiebung nach unten bis Mitternacht etwas ab und verstärkt sie danach. So liegt die Dopplerverschiebung beim Aufgang bei -400 Hz und beim Untergang bei -2900 Hz. Pro Stunde verschiebt sich die Frequenz um 200 Hz nach unten. Da die Doppler-Verschiebung aber relativ klein bleibt, stellt das kein Problem dar, vielmehr ist sie ein weiteres Indiz, das richtige Objekt im Fokus zu haben!